
Tinker9 User Manual

Zhi Wang & Jay W. Ponder

Mar 27, 2023

CONTENTS

1 Introduction 1

2 Installation 3
2.1 Prerequisites . 3
2.2 Download the Canonical Tinker 5
2.3 Build Tinker9 with CMake 6

3 Tutorials 13
3.1 Common File Types . 13
3.2 Command Line GUI . 14
3.3 Program: analyze . 18
3.4 Program: minimize . 18
3.5 Program: dynamic . 18

4 Features & Methods 19
4.1 Valence Potential Functions 19
4.2 Van der Waals Potential Functions 24
4.3 Integrators and Ensembles 24

5 Electrostatics 27
5.1 Permanent Multipole . 27
5.2 Induced Dipole . 31
5.3 Quasi-Internal Frame . 35

6 Keywords 43

i

6.1 Valence Potentials . 44
6.2 Constraints & Restraints . 59
6.3 HIPPO Force Field . 61
6.4 Molecular Dynamics and Ensembles 61
6.5 Free Energy . 62
6.6 Parallelization . 62
6.7 Mathematical Algorithms 63

References 65

Index 67

ii

CHAPTER

ONE

INTRODUCTION

1

Tinker9 User Manual

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Prerequisites

Hardware

A relatively recent NVIDIA GPU is mandatory for the GPU code. The
oldest NVIDIA GPU Tinker9 has been tested on is GeForce GTX 675MX
(compute capability 3.0).

Operating Systems and Compilers

OS and Toolchain Version
OS Linux, WSL2, macOS <= 10.13
CMake >= 3.18
Fortran GNU or Intel
C++ [a]
CUDA/nvcc [b]
OpenACC/NVHPC/PGI [c]

• [a] Recent C++ compiler that supports C++11 syntax.

• [b] GPU code only. Version >= 9.0.

• [c] Optional for the GPU code. A recent NVIDIA HPC SDK is pre-
ferred.

• [d] We have successfully built Tinker9 on Windows WSL2 Ubuntu
with CUDA 11.0 and NVHPC 20.9. Please check this link for more

3

https://www.developer.nvidia.com/hpc-sdk
https://docs.nvidia.com/cuda/wsl-user-guide/index.html

Tinker9 User Manual

details.

Using NVIDIA HPC SDK on Clusters

Prior to rebranding, the current NVIDIA HPC SDK was known as the PGI
compiler suite. During Jan. 2020 we worked on a cluster that was still run-
ning Red Hat with gcc 4.8.5 by default without root privilege. Although
several more recent gcc and PGI versions were available via the module
program, the most recent PGI compiler (2019) was still configured with
gcc 4.8.5 by default, which had a very bad support for C++11. Without
root privilege on the cluster, we had to use a custom localrc file by running
the following command to reconfigure PGI compiler with gcc 7.4.0:

makelocalrc $PGI/linux86-64-llvm/2019 \
-gcc /usr/local/gcc-7.4.0/bin/gcc \
-gpp /usr/local/gcc-7.4.0/bin/g++ \
-g77 /usr/local/gcc-7.4.0/bin/gfortran \
-d /dir_for_new_config -x

then added export PGI_LOCALRC=/dir_for_new_config/localrc to my bash
resource file.

(Updated in Apr. 2021)

Compilers with the new brand name NVHPC now have a different direc-
tory structure. The new command will look like

makelocalrc $NVHPC/Linux_x86_64/2020/compilers \
-gcc /usr/local/gcc-7.4.0/bin/gcc \
-gpp /usr/local/gcc-7.4.0/bin/g++ \
-g77 /usr/local/gcc-7.4.0/bin/gfortran \
-d /dir_for_new_config -x

then add export NVLOCALRC=/dir_for_new_config/localrc to the shell re-
source file.

FFTW Libraries

Canonical Tinker requires FFTW libraries because by default it is com-
piled with OpenMP. Otherwise, Tinker will use FFTPACK. In Tinker9, the
underlying libtinker.a will be compiled without OpenMP, therefore FFTW
libraries are no longer mandatory for GPU code.

4 Chapter 2. Installation

Tinker9 User Manual

However, FFTW libraries are required by CPU code. Two prebuilt FFTW
libraries, libfftw3 and libfftw3_threads are needed by the double precision
CPU code. The other two FFTW libraries, libfftw3f and libfftw3f_threads
are needed by the mixed and single precision CPU code.

Other Nonmandatory Utilities

• ClangFormat: to format the source code.

• Doxygen: to generate developer guides.

• Sphinx: to generate user manual.

– PDF version also depends on TeX.

python3 -m venv env-tinker9doc
source env-tinker9doc/bin/activate
pip3 install -r path_to/doc/manual/requirements.txt

2.2 Download the Canonical Tinker

Using the incorrect Tinker version, the executables are likely to fail with
segfault. Since d71f4793 (Dec. 6, 2021), downloading the required Tin-
ker version is automated in the CMake script. For versions prior to this
commit, please refer to the following.

Deprecated

If this source code was cloned by Git, you can checkout Tinker
from the tinker Git submodule:

checkout Tinker
cd tinker9
git submodule update --init

Alternatively, remove the directory tinker9/tinker and clone
Tinker from GitHub to replace the deleted directory, then
checkout the required version b92eacc8.

2.2. Download the Canonical Tinker 5

https://clang.llvm.org/docs/ClangFormat.html
https://www.doxygen.nl
https://www.sphinx-doc.org
https://www.tug.org/begin.html
https://github.com/TinkerTools/tinker9/commit/d71f4793
https://github.com/tinkertools/tinker

Tinker9 User Manual

cd tinker9
rm -rf tinker
git clone https://github.com/tinkertools/tinker
cd tinker
git checkout <TheRequiredVersion>

2.3 Build Tinker9 with CMake

2.3.1 Quick Start

For a GPU card with compute capability 7.0, an example to compile the
GPU code without OpenACC:

cd tinker9 && mkdir build
FC=gfortran compute_capability=70 gpu_lang=cuda cmake ..
make
make test

Assuming separate CUDA and NVHPC are properly installed, another ex-
ample to compile the GPU code with both OpenACC and CUDA:

cd tinker9 && mkdir build
cmake -DCMAKE_Fortran_COMPILER=gfortran -DCOMPUTE_CAPABILITY=70 .
→˓.
make
make test

For the options of other GPU devices and features, please refer to the sub-
sequent sections.

6 Chapter 2. Installation

Tinker9 User Manual

2.3.2 Configure CMake

You can skip this section if you are familar with CMake.

Suppose the current working directory is /home/tinker9 and we want to
create a build directory called build in /home/tinker9. We can do mkdir build
then cd build. Because the top-level CMakeLists.txt file is in the parent
directory, if there was nothing else to configure, command cmake .. would
generate the Makefile. The alternative way is to specify the build and
source directories to CMake, e.g.,

cmake -B /home/tinker9/build -S /home/tinker9

Some CMake installations also provide a command line gui ccmake and
a simple gui program cmake-gui that can replace cmake in the commands
above.

2.3.3 Configure Compilers

If we are lucky, we do not need to specify compilers in the cmake configura-
tion. However, specifying these compilers is preferred because programs
are not always installed the way we wanted. Set CXX=. . . , CUDACXX=. . . ,
and FC=. . . to specify the non-default C++, CUDA, and Fortran compil-
ers, respectively. These environmental variables are supported by cmake.
Do not use nvfortran.

This cmake script checks a custom environmental variable ACC=. . . only
for the OpenACC GPU code. If not set, the building script will take a guess
at the OpenACC compiler. ACC will also be used as the C++ compiler. The
value of CXX (if set) will be neglected.

The only place where a C compiler may be used in Tinker9 is on the old
Mac computers that had Nvidia support. clang is hardwired in the cmake
scripts to compile the Objective-C and C source files. Thus, CC=. . . is not
worth setting in the cmake configuration.

2.3. Build Tinker9 with CMake 7

Tinker9 User Manual

2.3.4 Configure Tinker9

The following options are passed to CMake program with their default
values (if there is one). -D is prefixed to the options. CMake provides two
standard ways to let users customize the values:

• Change their values interactively in the ccmake command line gui;

• Pass the new value to CMake via command line arguments cmake
-DOPTION=NewValue.

In addition to these two canonical methods, default value can also be set
by its corresponding environmental variable, documented as (env) here.
Note that there is no -D prefix for the environmental variables.

-DCMAKE_BUILD_TYPE (opt) = Release

Standard CMAKE_BUILD_TYPE option. Build type is case insensitive and
can be Debug, Release, RelWithDebInfo (release with debug info), and Min-
SizeRel (minimum size release).

-DCMAKE_INSTALL_PREFIX (install) = [NO DEFAULT VALUE]

Install the executables under ${CMAKE_INSTALL_PREFIX}. If this op-
tion is not set, make install is configured not to install anything, which is
different from the default cmake behavior to install the program under
/usr/local.

-DSTD (std) = AUTO

C++ syntax standard. The source code is c++11-compliant, and should
have no problems compiled with c++14. If set to 14 here, users should
make sure the compilers are c++14-compliant. In general, users should
not worry about the C++ standard for Tinker9. Using a more recent C++
standard to write the source code is unlikely to speed up the performance
of Tinker9 and may harm the availability of Tinker9 to older machines.

-DPREC (prec) = mixed

Precision of the floating-point numbers. With flag double/d, all of
the floating-point numbers are treated as real*8/double values, or
real*4/single values if with flag single/s. Mixed precision flag mixed/m
will use real*4 or real*8 numbers in different places. Note that this flag

8 Chapter 2. Installation

Tinker9 User Manual

will not change the precision of the variables hard-coded as float or double
types.

-DDETERMINISTIC_FORCE (deterministic_force) = AUTO

Flag to use deterministic force. This feature will be implicitly enabled by
mixed and single precisions, but can be explicitly disabled by setting the
flag to OFF (or 0), and can be explicitly enabled by value ON (or 1).

In general, evaluating energy, forces etc. twice, we don’t expect to get two
identical answers, but we may not care as much because the difference is
usually negligible. (See Why is cos(x) != cos(y)?) Whereas in MD, two
simulations with the same initial configurations can easily diverge due to
the accumulated difference. If, for whatever reason, you are willing to
elongate the process of the inevitable divergence at the cost of slightly
slower simulation speed, a more “deterministic” force (using fixed-point
arithmetic) can help.

-DHOST (host) = OFF

Flag to compile to GPU (with value 0 or OFF) or CPU (with value 1 or ON)
version.

-DGPU_LANG (gpu_lang) = OPENACC

If set to CUDA, the GPU code will only use the cuda source files. And the
program will crash at runtime if it falls into an OpenACC code path.

-DCOMPUTE_CAPABILITY (compute_capability) = AUTO

GPU code only.

CUDA compute capability (multiplied by 10) of GPU. Valid values (non-
inclusive) are 35, 50, 60, 70, 75, etc., and can be comma-separated, e.g.
35,60. Multiple compute capabilites will increase the size of executables.
If left unspecified, the script will attempt to detect the GPU, although the
detection may fail due to different reasons, which would then require this
option to be specified explicitly.

If new cards are released but the newer compute capabilities are not sup-
ported, please inform us.

The full list of compute capabilities can be found on the NVIDIA website.

-DCUDA_DIR (cuda_dir) = /usr/local/cuda

2.3. Build Tinker9 with CMake 9

https://isocpp.org/wiki/faq/newbie#floating-point-arith2
https://developer.nvidia.com/cuda-gpus

Tinker9 User Manual

Nvidia GPU code only.

Top-level CUDA installation directory, under which directories include, lib
or lib64 can be found. This option will supersede the CUDA installation
identified by the official CUDACXX environmental variable.

Sometimes the PGI compiler and the NVCC compiler are not “com-
patible.” For instance, although PGI 19.4 supports CUDA 9.2, 10.0,
10.1, but the default CUDA version configured in PGI 19.4 may be
9.2 and the external NVCC version is 10.1. One solution is to pass
CUDA_HOME=${cuda_dir} to the PGI compiler, in which case, cuda_dir
should be set to /usr/local/cuda-10.1.

-DFFTW_DIR (fftw_dir) = ${CMAKE_BINARY_DIR}/fftw

CPU code only.

Top-level FFTW3 installation, under which include/fftw3.h and lib/libfftw3
static libraries are expected to be found.

2.3.5 Make Tinker9

The following Makefile targets will be generated by CMake. Run make -j
for the default target(s) and make TARGET(S) -j for others.

tinker9

Compile and link the tinker9 executable.

all.tests

Compile and link the all.tests executable.

default

Make two targets: tinker9 and all.tests executables.

all

Same as the default target.

test

Run unit tests in a random order. Exit on the first error.

man

10 Chapter 2. Installation

Tinker9 User Manual

Generate user manual.

doc

Generate developer guides.

2.3. Build Tinker9 with CMake 11

Tinker9 User Manual

12 Chapter 2. Installation

CHAPTER

THREE

TUTORIALS

Let’s create a directory tutorial under the home directory and copy the
directories tinker9/example and tinker9/params here.

zw@Blade:~$ mkdir ~/tutorial; cd ~/tutorial
zw@Blade:~/tutorial$ cp -r ~/tinker9/{example,params} .
zw@Blade:~/tutorial$ ls
example/ params/
zw@Blade:~/tutorial$ cd example; ls
ar94.key dhfr2.key dhfr.key dhfr.seq
ar94.xyz dhfr2.xyz dhfr.pdb dhfr.xyz

This tutorial also assumes the executable tinker9 is in your PATH. If not,
prefix the directory to the tinker9 executable.

3.1 Common File Types

You will find .xyz and .key files under example directory and .prm files
under params directory.

sample.xyz The .xyz file is the basic Tinker Cartesian coordinates file
type. It contains a title line followed by one line for each atom in
the structure. Each line contains: the sequential number within the
structure, an atomic symbol or name, X-, Y-, and Z-coordinates, the
force field atom type number of the atom, and a list of the atoms

13

Tinker9 User Manual

connected to the current atom. Except for programs whose basic op-
eration is in torsional space, all Tinker calculations are done from
some version of the .xyz format.

sample.key The keyword parameter file always has the extension .key and
is optionally present during Tinker calculations. It contains values
for any of a wide variety of switches and parameters that are used to
change the course of the computation from the default. The detailed
contents of this file is explained in a latter section. If a molecular
system specific keyfile, in this case sample.key, is not present, the
the Tinker program will look in the same directory for a generic file
named tinker.key.

sample.prm The potential energy parameter files distributed with the
Tinker package all end in the extension .prm, although this is not
required by the programs themselves. Each of these files contains
a definition of the potential energy functional forms for that force
field as well as values for individual energy parameters. For exam-
ple, the mm3pro.prm file contains the energy parameters and defini-
tions needed for a protein-specific version of the MM3 force field.

3.2 Command Line GUI

Tinker programs can take interactive input. The prompt messages try to
be self-explanatory. Following is an example to use the interactive inter-
face for a short DHFR simulation with an AMOEBA force field.

Warning: The simulation will not run unless more keywords are
added to the key file. This is only a demonstration to the interactive
interface.

14 Chapter 3. Tutorials

Tinker9 User Manual

Item Value Input
Coordinate File dhfr2.xyz dhfr2.xyz
Simulations Steps 1000 1000
Time Step 2 fs 2
Time Between Saves 1 ps 1
Ensemble NVT 2
Thermostat Temperature 298 K 298

zw@Blade:~/tutorial/example$ tinker9 dynamic

##
→˓###

##
→˓#####
␣

→˓ ###
Tinker9 --- Software Tools for Molecular Design ␣
→˓ ###
␣
→˓ ##
Version 1.0.0-rc Jan 2021 ␣
→˓ ##
All Rights Reserved ␣
→˓ ###
␣

→˓ ###
##

→˓#####
##

→˓###
Compiled at: 20:54:14 Feb 3 2021
Commit Date: Wed Feb 3 20:52:06 2021 -0600
Commit: 3b0791c0

Enter Cartesian Coordinate File Name : dhfr2.xyz

(continues on next page)

3.2. Command Line GUI 15

Tinker9 User Manual

(continued from previous page)

##
Joint Amber-CHARMM Benchmark on Dihydrofolate Reductase in Water
23558 Atoms, 62.23 Ang Cube, 9 Ang Nonbond Cutoffs, 64x64x64 PME
##

Enter the Number of Dynamics Steps to be Taken : 1000

Enter the Time Step Length in Femtoseconds [1.0] : 2

Enter Time between Saves in Picoseconds [0.1] : 1

Available Statistical Mechanical Ensembles :
(1) Microcanonical (NVE)
(2) Canonical (NVT)
(3) Isoenthalpic-Isobaric (NPH)
(4) Isothermal-Isobaric (NPT)

Enter the Number of the Desired Choice [1] : 2

Enter the Desired Temperature in Degrees K [298] : 298

Once you are familar with the interactive interface, you can simply ap-
pend the interactive input to the program name.

zw@Blade:~/tutorial/example$ tinker9 dynamic dhfr2.xyz 1000 2 1␣
→˓2 298

##
→˓###

##
→˓#####
␣

→˓ ###
Tinker9 --- Software Tools for Molecular Design ␣
→˓ ###
␣
→˓ ##

(continues on next page)

16 Chapter 3. Tutorials

Tinker9 User Manual

(continued from previous page)

Version 1.0.0-rc Jan 2021 ␣
→˓ ##
All Rights Reserved ␣
→˓ ###
␣

→˓ ###
##

→˓#####
##

→˓###
Compiled at: 20:54:14 Feb 3 2021
Commit Date: Wed Feb 3 20:52:06 2021 -0600
Commit: 3b0791c0

##
Joint Amber-CHARMM Benchmark on Dihydrofolate Reductase in Water
23558 Atoms, 62.23 Ang Cube, 9 Ang Nonbond Cutoffs, 64x64x64 PME
##

You can also use stdin redirection to run Tinker programs. Save the com-
mand line arguments in a file and use it as follows.

zw@Blade:~/tutorial/example$ cat args.txt
dhfr2.xyz
1000
2
1
2
298
zw@Blade:~/tutorial/example$ tinker9 dynamic < args.txt

3.2. Command Line GUI 17

Tinker9 User Manual

3.3 Program: analyze

3.4 Program: minimize

3.5 Program: dynamic

18 Chapter 3. Tutorials

CHAPTER

FOUR

FEATURES & METHODS

4.1 Valence Potential Functions

4.1.1 Bond Stretching

Bond term is an empirical function of bond deviating from the ideal bond
length, i.e., ∆𝑏 = 𝑏−𝑏0. To support the AMOEBA force field model, Tinker
includes the 3rd and 4th order terms.

𝑈 = 𝑘∆𝑏2(1 + 𝑘3∆𝑏+ 𝑘4∆𝑏
2).

Setting 3rd and 4th order coefficients to zero will give the harmonic func-
tional form.

Note: Different from Hooke’s Law, 𝑈 = 𝑘𝑥2/2, Tinker usually drops the
coefficient 1/2.

The Morse oscillator is also implemented in Tinker:

𝑈 =𝐷𝑒[1− exp(−𝑎∆𝑏)]2.

Parameter a is hardwired to 2 by approximation. Following equation 𝑎 =√︁
𝑘

2𝐷𝑒
and the Tinker convention to include 1/2 in the force constant, De

is k/4.

19

Tinker9 User Manual

4.1.2 Angle Bending

Similar to bond stretching, angle bending term is also an empirical func-
tion of angle deviating from the ideal angle value, i.e., ∆𝜃 = 𝜃 −𝜃0. Terms
from cubic to sextic are added to generalize the HARMONIC functional
form.

𝑈 = 𝑘∆𝜃2(1 + 𝑘3∆𝜃 + 𝑘4∆𝜃
2 + 𝑘5∆𝜃

3 + 𝑘6∆𝜃
4).

MMFF force field has a special treatment for LINEAR angle, e.g., carbon
dioxide. Since the ideal angle should always be 𝜋 rad, the deviation can
be approximated by

∆𝜃 = 𝜃 −𝜋 = 2(
𝜃
2
− 𝜋

2
) ∼ 2sin(

𝜃
2
− 𝜋

2
) = −2cos

𝜃
2
.

Only keeping the quadratic term, the angle bending term can be simpli-
fied to

𝑈 = 2𝑘(1 + cos𝜃).

The LINEAR angle type is a special case of the SHAPES-style Fourier po-
tential function [1] with 1-fold periodicity, which is referred to as the
FOURIER angle type in Tinker jargon and has the following form

𝑈 = 2𝑘(1 + cos(𝑛𝜃 −𝜃0)).

In addition, there is another IN-PLANE angle type for trigonal center
atoms. One can project atom D to point X on plane ABC. Instead of angle
A-D-B, the ideal and actual angle values are for angle A-X-B (see Fig. 4.1).

4.1.3 Stretch-Bend Coupling

The functional forms for bond stretching, angle bending, and stretch-bend
coupling are those of the MM3 force field [2]:

𝑈 = (𝑘1∆𝑏1 + 𝑘2∆𝑏2)∆𝜃.

Even though force constants k1 and k2 are implemented as two indepen-
dent variables in Tinker, they were treated as the same variable in the
original literature.

20 Chapter 4. Features & Methods

Tinker9 User Manual

X

D

A

B

C

θ

Fig. 4.1: A trigonal center and an in-plane angle.

4.1.4 Urey-Bradley Potential

Urey-Bradley potential energy accounts for the 1-3 nonbonded interac-
tions. The cubic and quartic terms are added to the harmonic functional
form in Tinker:

𝑈 = 𝑘∆𝑢2(1 + 𝑘3∆𝑢 + 𝑘4∆𝑢
2),

where ∆𝑢 is the difference of 1-3 distance deviating from its ideal value.
Coefficients k3 and k4 are usually zero.

4.1.5 Out-of-Plane Bending

Tinker has implemented two types of out-of-plane bending angles. In the
Wilson-Decius-Cross formulation [3], the out-of-plane angle 𝜒 associated
with bond BD in Fig. 4.1 is the angle between BD and plane ADC, whereas
the Allinger formulation uses the angle between BD and plane ABC. Sim-
ilar to harmonic bond stretching, the following functional form has been

4.1. Valence Potential Functions 21

Tinker9 User Manual

implemented in Tinker:

𝑈 = 𝑘𝜒2(1 + 𝑘3𝜒+ 𝑘4𝜒
2).

4.1.6 Improper Dihedral

Commonly used in the CHARMM force fields, this potential function is
meant to keep atoms planar. The ideal angle 𝜑0 defined by dihedral D-
A-B-C will always be zero degrees. D is the trigonal atom, A-B-C are the
peripheral atoms. In the original CHARMM parameter files, the trigonal
atom is often listed last as C-B-A-D.

Some of the improper angles are “double counted” in the CHARMM pro-
tein parameter set. Since Tinker uses only one improper parameter per
site, we have doubled these force constants in the Tinker version of the
CHARMM parameters. Symmetric parameters, which are the origin of
the “double counted” CHARMM values, are handled in the Tinker pack-
age by assigning all symmetric states and using the Tinker force constant
divided by the symmetry number.

The harmonic functional form implemented in Tinker is

𝑈 = 𝑘(𝜑−𝜑0)2.

There is no coefficient 1/2 before the force coefficient, which may be dif-
ferent in other software packages.

4.1.7 Improper Torsion

Commonly used in the AMBER force fields, it defines a hypothetical tor-
sional angle for four atoms not successively bonded, e.g., a trigonal center.
The functional form is similar to the proper torsion,

𝑈 =
3∑︁
𝑛=1

𝑉𝑛[1 + cos(𝑛𝜑− 𝛿𝑛)],

where n is the periodicity and 𝛿𝑛 is the corresponding phase shift.

22 Chapter 4. Features & Methods

Tinker9 User Manual

4.1.8 Torsional Angle

The functional form implemented in Tinker is

𝑈 =
6∑︁
𝑛=1

𝑉𝑛[1 + cos(𝑛𝜑− 𝛿𝑛)],

where n is the periodicity (up to 6) and 𝛿𝑛 is the corresponding phase shift.

4.1.9 Pi-Orbital Torsional Angle

The 2-fold Fourier torsional angle potential to keep a pi-orbital molecular
structure (e.g., ethylene) planar.

𝑈 = 𝑉 [1 + cos(2𝜑−𝜋)].

4.1.10 Stretch-Torsion Coupling

4.1.11 Angle-Torsion Coupling

4.1.12 Torsion-Torsion Coupling

The potential energy is extrapolated from a predefined 2-D map with the
(𝜑,𝜓) angles.

4.1. Valence Potential Functions 23

Tinker9 User Manual

4.2 Van der Waals Potential Functions

4.3 Integrators and Ensembles

4.3.1 Monte Carlo Barostat

4.3.2 Berendsen Barostat

4.3.3 Verlet Integrator

4.3.4 RESPA Integrator

4.3.5 Extended Nosé-Hoover Chain

Authors of paper [4] (MTK) discussed several methods for NVT and NPT
ensembles.

Number Sections in MTK Method
1a 2.1 4.3 NVT
2a 2.2 4.4 NPT (isotropic cell fluctuations)
3a 2.3 4.5 NPT (full cell fluctuations)
4a 5.2 XO-RESPA
4b 5.2 XI-RESPA
1b 5.3 RESPA 1a
2b 5.4 RESPA 2a
3b 5.4 RESPA 3a

The isothermal-isobaric integrator implemented in Fortran Tinker and
here is NPT-XO (#2a-4a).

Tip: Nosé-Hoover Chain can be enabled by keywords

integrator nose-hoover

or

24 Chapter 4. Features & Methods

Tinker9 User Manual

thermostat nose-hoover
barostat nose-hoover

with the NPT option in the dynamic program.

4.3.6 Langevin Piston

The Langevin piston method for constant pressure [5] is integrated in the
Leapfrog framework.

Tip: Langevin Piston can be enabled by keywords

integrator lpiston

or

thermostat lpiston
barostat lpiston

with the NPT option in the dynamic program.

4.3. Integrators and Ensembles 25

Tinker9 User Manual

26 Chapter 4. Features & Methods

CHAPTER

FIVE

ELECTROSTATICS

5.1 Permanent Multipole

5.1.1 Definitions and Units

The electrostatic potential at r due to the charge distribution nearby is

𝜑(𝑟) =
1

4𝜋𝜖0

∫︁
𝑑𝑠

𝜌(𝑠)
|𝑟 − 𝑠|

, 𝑑𝑠 = d𝑥d𝑦d𝑧. (5.1)

Tinker uses a variable electric (in chgpot module) to represent the the
factor 1/(4𝜋𝜖0). Its default magnitude is 332.063713, which is a constant
defined by variable coulomb (in units module), and its units are kcal/mol
Å/e2. The default value can be modified by the ELECTIRIC keyword.

Note: Should the value of coulomb documented here be out-dated and
become inconsistent with our code, please send us a pull request.

Expanding 1/ |𝑟 − 𝑠| in Taylor series, 4𝜋𝜖0𝜑(𝑟) can be rewritten as[︃∫︁
𝑑𝑠𝜌(𝑠)

]︃
1
𝑟

+
∑︁
𝑖

[︃∫︁
𝑑𝑠𝜌(𝑠)𝑠𝑖

]︃
∇𝑖

1
𝑟

+
∑︁
𝑖𝑗

[︃
1
2

∫︁
𝑑𝑠𝜌(𝑠)𝑠𝑖𝑠𝑗

]︃
∇𝑖∇𝑗

1
𝑟

+ · · · ,

(5.2)

where three pairs of square brackets give a set of definitions of monopole
(charge, C), dipole (D), and quadrupole moments (Q*), respectively. The

27

Tinker9 User Manual

units of the multipole moments used in Tinker parameter files and inter-
nal calculation are different.

Multipole Parameter Units Internal Units
Charge e e
Dipole e Bohr e Å
Quadrupole e Bohr2 e Å2

In addition to different units, the quadrupole moments in Tinker param-
eter files use what is traditionally called traceless quadrupole Θ that has a
different definition than Q*. The third term in (5.2) can be rewritten as∑︁

𝑖𝑗

[︃
1
2

∫︁
𝑑𝑠𝜌(𝑠)(3𝑠𝑖𝑠𝑗 − 𝑠2𝛿𝑖𝑗)

]︃
𝑟𝑖𝑟𝑗
𝑟5 ,

hence the traceless quadrupole can be defined as

Θ𝑖𝑗 =
1
2

∫︁
𝑑𝑠𝜌(𝑠)(3𝑠𝑖𝑠𝑗 − 𝑠2𝛿𝑖𝑗).

It is easy to confirm that
∑︀𝑥,𝑦,𝑧
𝑘 (3𝑠𝑘𝑠𝑘 − 𝑠2) = 0, thus,

Θ𝑖𝑗 = 3𝑄*𝑖𝑗 − 𝛿𝑖𝑗
𝑥,𝑦,𝑧∑︁
𝑘

𝑄*𝑘𝑘 .

Internally, Tinker scales Θ by 1/3

𝑄 = Θ/3,

so that the energy expression is the same as if we were using Q*.

5.1.2 Energy Torque Gradient

Potential energy

𝑈 =
1

4𝜋𝜖0

∫︁
𝑑𝑠𝜌(𝑠)𝜑(𝑠). (5.3)

28 Chapter 5. Electrostatics

Tinker9 User Manual

Potential energy with discretized charge distribution in (5.3)

𝑈 (𝑟) = 𝜑(𝑟)𝐶(𝑟) +𝜑′(𝑟)𝐷(𝑟) +𝜑′′(𝑟)𝑄(𝑟) + · · · . (5.4)

Distance

(𝑟𝑥, 𝑟𝑦 , 𝑟𝑧) = 𝑟 = 𝑟2 − 𝑟1.

Pairwise (atoms 1 and 2) quadrupole energy

𝑈12 =𝑀𝑇
1 𝑇12𝑀2.

Multipoles

𝑀1 =

⎛⎜⎜⎜⎜⎜⎜⎝𝐶1
𝐷1
𝑄1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑀2 =

⎛⎜⎜⎜⎜⎜⎜⎝𝐶2
𝐷2
𝑄2

⎞⎟⎟⎟⎟⎟⎟⎠ .
T matrix

𝑇12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 ∇2 ∇2

2
∇1 ∇1∇2 ∇1∇2

2
∇2

1 ∇2
1∇2 ∇2

1∇
2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ 1
𝑟
.

The upper left 4×4 elements of 𝑇12

𝑇 4×4
12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/𝑟 −𝑟𝑥/𝑟3 −𝑟𝑦 /𝑟3 −𝑟𝑧/𝑟3

𝑟𝑥/𝑟
3 −3𝑟2

𝑥 /𝑟
5 + 1/𝑟3 −3𝑟𝑥𝑟𝑦 /𝑟5 −3𝑟𝑥𝑟𝑧/𝑟5

𝑟𝑦 /𝑟
3 −3𝑟𝑥𝑟𝑦 /𝑟5 −3𝑟2

𝑦 /𝑟
5 + 1/𝑟3 −3𝑟𝑦𝑟𝑧/𝑟5

𝑟𝑧/𝑟
3 −3𝑟𝑥𝑟𝑧/𝑟5 −3𝑟𝑦𝑟𝑧/𝑟5 −3𝑟2

𝑧 /𝑟
5 + 1/𝑟3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
In the EWALD summation, 1/𝑟𝑘 terms will have different forms (Bn). Nev-
erthelss, they are still connected through derivatives.

Non-EWALD EWALD
1/𝑟 𝐵0 = erfc(𝛼𝑟)/𝑟
1/𝑟3 𝐵1
3/𝑟5 𝐵2
15/𝑟7 𝐵3
105/𝑟9 𝐵4
945/𝑟11 𝐵5

5.1. Permanent Multipole 29

Tinker9 User Manual

The Bn terms are related to the (complementary) Boys functions and (com-
plementary) error functions. For 𝑥 > 0 and 𝑛 ≥ 0,

erf(𝑥)
𝑥

=
2
√
𝜋
𝐹0(𝑥2),

erfc(𝑥)
𝑥

=
2
√
𝜋
𝐹𝐶0 (𝑥2),

𝐹𝑛(𝑥) =
∫︁ 1

0
exp(−𝑥𝑡2)𝑡2𝑛𝑑𝑡,

𝐹𝐶𝑛 (𝑥) =
∫︁ ∞

1
exp(−𝑥𝑡2)𝑡2𝑛𝑑𝑡.

The Boys functions can be generated through upward and downward re-
cursions

𝐹𝑛(𝑥) =
2𝑥𝐹𝑛+1(𝑥) + exp(−𝑥)

2𝑛+ 1
,

𝐹𝐶𝑛 (𝑥) =
2𝑥𝐹𝐶𝑛+1(𝑥)− exp(−𝑥)

2𝑛+ 1
.

Energy, torque, and force

Terms Energy Torque Force
C 𝜑𝐶 N/A 𝜑′𝐶
D 𝜑′𝐷 𝜑′ ×𝐷 𝜑′′𝐷
Q 𝜑′′𝑄 𝜑′′ ×𝑄 𝜑′′′𝑄

𝜏(𝐷) = 𝜑′ ×𝐷 =𝐷 ×𝐸,

𝜏𝑖(𝑄) = −2
∑︁
𝑗𝑘

𝑥𝑦𝑧∑︁
𝑙

𝜖𝑖𝑗𝑘𝑄𝑗𝑙𝜑
′′
𝑘𝑙 ,

where 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol.

Reference: [6].

30 Chapter 5. Electrostatics

Tinker9 User Manual

5.2 Induced Dipole

5.2.1 Energy

𝜇 is the induced dipole in the external field E. The induced field due to the
induced dipole is 𝐸𝑢 = −𝑇 𝜇, and the induced dipole is proportional to the
total field 𝐸𝑡 :

𝜇 = 𝛼𝐸𝑡 = 𝛼(𝐸 +𝐸𝑢),

where 𝛼 is the polarizability. Defining 𝑇 = 𝛼−1 + 𝑇 , the induced dipole is
the solution to the linear equation

𝑇 𝜇 = 𝐸. (5.5)

The polarization energy is given by

𝑈 = −𝜇𝐸 +
∫︁ 𝜇

0
𝑑𝜇 𝑇 𝜇

= −𝜇𝐸 +
1
2
𝜇𝑇 𝜇.

(5.6)

On the right-hand side of (5.6):

• the 1st term is the contribution from the external field;

• the 2nd term is the mutual and self polarization energy.

Finally, the polarization energy is

𝑈 = −1
2
𝜇𝐸. (5.7)

5.2.2 Gradient

With limited numerical precision, the solution to linear equation (5.5) can-
not be fully precise:

𝑇 𝜇 = 𝜖+𝐸. (5.8)

5.2. Induced Dipole 31

Tinker9 User Manual

The gradient of the induced dipole can be written in

𝜇′ = 𝑇 −1(𝜖′ +𝐸′ − 𝑇 ′𝜇),

and the polarization gradient is

𝑈 ′ = −1
2

(𝐸𝜇′ +𝜇𝐸′)

= −1
2

[(−𝜖+𝜇𝑇)𝑇 −1(𝜖′ +𝐸′ − 𝑇 ′𝜇) +𝜇𝐸′]

≈ −1
2

(𝜇𝐸′ −𝜇𝑇 ′𝜇+𝜇𝐸′),

only if the convergence of (5.8) is tight that 𝜖 and 𝜖′ terms will drop.

5.2.3 Conjugate Gradient

Tinker uses the following Conjugate Gradient algorithm (C.G.) with a
sparse matrix preconditioner (denoted as M) [7] to obtain the induced
dipoles. Related Tinker variables and routines are tabulated.

procedure Conjugate Gradient

Guess Initial µ
r = E − T̃ µ
p =Mr
while not converged do

γ ← rMr/pT̃ p
µ← µ+γp
r1← r −γT̃ p
β← r1Mr1/rMr (Previous r is used.)
p←Mr1 + βp
Check Convergence

end while
end procedure

32 Chapter 5. Electrostatics

Tinker9 User Manual

C.G. Terms Tinker variables and routines
𝛾 a
𝛽 b
𝑟 rsd
𝑀𝑟 zrsd
𝑝 conj
𝑇 𝑝 vec
−𝑇 ufield()
𝑀 uscale()

5.2.4 Polarization Model: AMOEBA (Thole Damping 2)

AMOEBA force field adopts two polarization schemes, d and p, for the ex-
ternal field due to the permanent multipoles, and a third scheme u for mu-
tual induced dipole interactions. Both d and u schemes are group-based.
The p scheme is atomic connectivity-based. Tinker uses C.G. iterations to
solve the following linear equations

(1/𝛼 + 𝑇 𝑢)𝜇𝑑 = 𝐸𝑑
(1/𝛼 + 𝑇 𝑢)𝜇𝑝 = 𝐸𝑝,

and defines the polarization energy as

𝑈 = −1
2
𝜇𝑑𝐸𝑝. (5.9)

From an optimizational perspective, (5.9) is the minimum of the target
function

𝑓1(𝜇𝑑 ,𝜇𝑝) =
1
2

(︂1
2
𝜇𝑑𝑇 𝜇𝑝 +

1
2
𝜇𝑝𝑇 𝜇𝑑 −𝐸𝑑𝜇𝑝 −𝐸𝑝𝜇𝑑

)︂
,

whereas the way C.G. coded in Tinker is to solve the minimum of another
target function

𝑓2(𝜇𝑑 ,𝜇𝑝) =
1
2

(︂1
2
𝜇𝑑𝑇 𝜇𝑑 +

1
2
𝜇𝑝𝑇 𝜇𝑝 −𝐸𝑑𝜇𝑑 −𝐸𝑝𝜇𝑝

)︂
.

The difference in two target functions is usually negligible unless other
loose convergence methods are used to compute the induced dipoles.

5.2. Induced Dipole 33

Tinker9 User Manual

In the Thole damping model, a charge distribution 𝜌 is used as a replace-
ment for the point dipole model. AMOEBA adopts the second functional
form

𝜌 =
3𝑎
4𝜋

exp(−𝑎𝑢3)

from paper [8], where u is the polarizability-scaled distance. The electro-
static field and potential at distance r can be obtained from Gauss’s law,

𝐸(𝑟) = −𝜑′(𝑟) =
1
𝑟2

∫︁ 𝑢

0
𝑑𝑢 4𝜋𝑢2𝜌 =

1− exp(−𝑎𝑢3)
𝑟2 ,

𝜑(𝑟) =
∫︁ ∞
𝑟
𝑑𝑟 𝐸(𝑟) =

𝜆1

𝑟
=

1
𝑟

⎡⎢⎢⎢⎢⎣1− (𝑎𝑢3)
1
3

3
Γ (−1

3
, 𝑎𝑢3)

⎤⎥⎥⎥⎥⎦ ,
where 𝜆1 serves as the 𝐵0 term in EWALD quadrupole interactions. 𝜆𝑛
terms are also related via derivatives

𝜑′′ =
1
𝑟3

[︁
2− (2 + 3𝑎𝑢3)exp(−𝑎𝑢3)

]︁
,

𝜑′′′ =
3
𝑟4

[︁
−2 + (2 + 2𝑎𝑢3 + 3𝑎2𝑢6)exp(−𝑎𝑢3)

]︁
,

𝜑′′′′ =
3
𝑟5

[︁
8− (8 + 8𝑎𝑢3 + 9𝑎3𝑢9)exp(−𝑎𝑢3)

]︁
,

𝜑′𝑖 = 𝜑′
𝑟𝑖
𝑟
,

𝜑′′𝑖𝑗 =
(︃
𝜑′′ −

𝜑′

𝑟

)︃
𝑟𝑖𝑟𝑗
𝑟2 +

𝜑′

𝑟
𝛿𝑖𝑗 ,

𝜑′′′𝑖𝑗𝑘 =
(︃
𝜑′′′ −

3𝜑′′

𝑟
+

3𝜑′

𝑟2

)︃
𝑟𝑖𝑟𝑗𝑟𝑘
𝑟3 +

(︃
𝜑′′

𝑟
−
𝜑′

𝑟2

)︃ ∑︀
𝑟𝑘𝛿𝑖𝑗
𝑟

,

𝜑′′′′𝑖𝑗𝑘𝑙 =
(︃
𝜑′′′′ −

6𝜑′′′

𝑟
+

15𝜑′′

𝑟2 −
15𝜑′

𝑟3

)︃
𝑟𝑖𝑟𝑗𝑟𝑘𝑟𝑙
𝑟4

+
(︃
𝜑′′′

𝑟
−

3𝜑′′

𝑟2 +
3𝜑′

𝑟3

)︃ ∑︀
𝑟𝑘𝑟𝑙𝛿𝑖𝑗
𝑟2 +

(︃
𝜑′′

𝑟2 −
𝜑′

𝑟3

)︃∑︁
𝛿𝑘𝑙𝛿𝑖𝑗 .

34 Chapter 5. Electrostatics

Tinker9 User Manual

Thus,

−𝜆3/𝑟
3 = 𝜑′/𝑟⇒
𝜆3 = 1− exp(−𝑎𝑢3),

3𝜆5/𝑟
5 = (𝜑′′ −𝜑′/𝑟)/𝑟2⇒
𝜆5 = 1− (1 + 𝑎𝑢3)exp(−𝑎𝑢3),

−15𝜆7/𝑟
7 = (𝜑′′′ − 3𝜑′′/𝑟 + 3𝜑′/𝑟2)/𝑟3⇒

𝜆7 = 1−
(︂
1 + 𝑎𝑢3 +

3
5
𝑎2𝑢6

)︂
exp(−𝑎𝑢3),

105𝜆9/𝑟
9 = (𝜑′′′′ − 6𝜑′′′/𝑟 + 15𝜑′′/𝑟2 − 15𝜑′/𝑟3)/𝑟4⇒

𝜆9 = 1−
(︂
1 + 𝑎𝑢3 +

18
35
𝑎2𝑢6 +

9
35
𝑎3𝑢9

)︂
exp(−𝑎𝑢3).

5.3 Quasi-Internal Frame

5.3.1 Rotation Matrix

Consider two vectors u, v and two reference frames A, B. R is the rotation
matrix of the axes such that

𝑅𝑢𝐴 = 𝑢𝐵,

𝑅𝑣𝐴 = 𝑣𝐵.

Since 𝑢𝑇𝐴𝑣𝐴 = 𝑢𝑇𝐵 𝑣𝐵,

𝑅𝑇𝑅 = 𝐼.

A 2-D tensor, e.g., quadrupole moment Q, in two reference frames are
associated by

𝑢𝑇𝐴𝑄𝐴𝑣𝐴 = 𝑢𝑇𝐵𝑄𝐵𝑣𝐵.

It is easy to prove that

𝑅𝑄𝐴𝑅
𝑇 =𝑄𝐵.

Two common transformations used in Tinker are:

5.3. Quasi-Internal Frame 35

Tinker9 User Manual

1

2

yg

zg yi

zi

Fig. 5.1: Global frame g and QI frame i of atoms 1 and 2. The z direction
of this QI frame is chosen along the distance vector.

36 Chapter 5. Electrostatics

Tinker9 User Manual

• From (A) Local Frame (in which parameters are provided) to (B)
Global Frame (in which the calculation is done);

• From (A) Global Frame (for direct pairwise electrostatics) to (B)
Quasi-Internal (QI) Frame (for optimized algebra), as shown in Fig.
5.1.

5.3.2 Multipole Interaction in QI Frame

Once the distance vector is in QI frame, many derivatives can be simplified
as shown in the following table. f(r) does not explicitly depend on 𝑟𝑥, 𝑟𝑦 , 𝑟𝑧.

Gradients Global Frame QI Frame
𝜕𝑓 (𝑟)/𝜕𝑥2 𝑓 ′(𝑟)𝑟𝑥/𝑟 0
𝜕𝑓 (𝑟)/𝜕𝑦2 𝑓 ′(𝑟)𝑟𝑦 /𝑟 0
𝜕𝑓 (𝑟)/𝜕𝑧2 𝑓 ′(𝑟)𝑟𝑧/𝑟 𝑓 ′(𝑟)

For potential energy, (5.4) can be used without modification in QI frame.
Since 𝜕𝜑1/𝜕𝑧1 = −𝐸𝑧1, the z direction gradient can be obtained from z
direction electrostatic field (Ez):

𝜕𝑈
𝜕𝑧

= −𝐸𝑧𝐶 −𝐸′𝑧𝐷 −𝐸′′𝑧 𝑄 − · · · .

Once the torques are computed the same way as in the previous section

𝜏 = 𝜏1 + 𝜏2 = 𝑟 × 𝐹 = (𝑈 ′𝑥,𝑈
′
𝑦 ,𝑈

′
𝑧)× (0,0, 𝑟) = (𝑈 ′𝑦𝑟,−𝑈 ′𝑥𝑟,0),

x and y direction gradients then become

𝑈 ′𝑥 = −𝜏𝑦 /𝑟,
𝑈 ′𝑦 = 𝜏𝑥/𝑟.

Depending on the direction of distance vector, the signs of x and y direc-
tion gradients may flip.

5.3. Quasi-Internal Frame 37

Tinker9 User Manual

5.3.3 Details

In the following notes, 𝐴 : 𝐵 stands for 𝐴 = 𝐴+𝐵. If there is no ambiguity,
𝑓 ′ and 𝑓 ′′ may stand for (𝑓 ′𝑥 , 𝑓

′
𝑦 , 𝑓
′
𝑧) and (𝑓 ′′𝑥𝑥, 𝑓

′′
𝑦𝑦 , 𝑓

′′
𝑧𝑧 , 𝑓

′′
𝑥𝑦 , 𝑓

′′
𝑥𝑧, 𝑓

′′
𝑦𝑧), respectively.

Potential Terms Notes
𝜑1 𝜑1
𝜑′1𝑥 𝜕𝜑1/𝜕𝑥1
𝜑′1𝑦 𝜕𝜑1/𝜕𝑦1

𝜑′1𝑧 𝜕𝜑1/𝜕𝑧1
𝜑′′1𝑥𝑥 𝜕2𝜑1/𝜕𝑥

2
1

𝜑′′1𝑦𝑦 𝜕2𝜑1/𝜕𝑦
2
1

𝜑′′1𝑧𝑧 𝜕2𝜑1/𝜕𝑧
2
1

𝜑′′1𝑥𝑦 𝜕2𝜑1/𝜕𝑥1𝜕𝑦1

𝜑′′1𝑥𝑧 𝜕2𝜑1/𝜕𝑥1𝜕𝑧1
𝜑′′1𝑦𝑧 𝜕2𝜑1/𝜕𝑦1𝜕𝑧1

𝜑2 𝜑2
𝜑′2𝑥 𝜕𝜑2/𝜕𝑥2
𝜑′2𝑦 𝜕𝜑2/𝜕𝑦2

𝜑′2𝑧 𝜕𝜑2/𝜕𝑧2
𝜑′′2𝑥𝑥 𝜕2𝜑2/𝜕𝑥

2
2

𝜑′′2𝑦𝑦 𝜕2𝜑2/𝜕𝑦
2
2

𝜑′′2𝑧𝑧 𝜕2𝜑2/𝜕𝑧
2
2

𝜑′′2𝑥𝑦 𝜕2𝜑2/𝜕𝑥2𝜕𝑦2

𝜑′′2𝑥𝑧 𝜕2𝜑2/𝜕𝑥2𝜕𝑧2
𝜑′′2𝑦𝑧 𝜕2𝜑2/𝜕𝑦2𝜕𝑧2

38 Chapter 5. Electrostatics

Tinker9 User Manual

Charge Terms

𝜑1 : 𝑇 (1,1)
12 𝐶2 = 𝐵0𝐶2, 𝜑

′
1 : 𝑇 (2:4,1)

12 𝐶2 =

⎛⎜⎜⎜⎜⎜⎜⎝ 0
0

𝑟𝐵1𝐶2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝜑′′1 : 𝑇 (5:13,1)
12 𝐶2 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵1𝐶2
𝐵1𝐶2

(𝐵1 − 𝑟2𝐵2)𝐶2
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

𝜑2 : 𝑇 (1,1)
21 𝐶1 = 𝐵0𝐶1, 𝜑

′
2 : 𝑇 (2:4,1)

21 𝐶1 = −

⎛⎜⎜⎜⎜⎜⎜⎝ 0
0

𝑟𝐵1𝐶1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝜑′′2 : 𝑇 (5:13,1)
21 𝐶1 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵1𝐶1
𝐵1𝐶1

(𝐵1 − 𝑟2𝐵2)𝐶1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

−𝐸𝑧1 : 𝑟𝐵1𝐶2, −𝐸′𝑧1 : −

⎛⎜⎜⎜⎜⎜⎜⎝ 0
0

𝐵1 − 𝑟2𝐵2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

−𝐸′′𝑧1 : −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝐵2𝐶2
𝑟𝐵2𝐶2

(3𝑟𝐵2 − 𝑟3𝐵3)𝐶2
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5.3. Quasi-Internal Frame 39

Tinker9 User Manual

Dipole Terms

𝜑1 : 𝑇 (1,2:4)
12 𝐷2 = −𝑟𝐵1𝐷𝑧2, 𝜑

′
1 : 𝑇 (2:4,2:4)

12 𝐷2 =

⎛⎜⎜⎜⎜⎜⎜⎝ 𝐵1𝐷𝑥2
𝐵1𝐷𝑦2

(𝐵1 − 𝑟2𝐵2)𝐷𝑧2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝜑′′1 : 𝑇 (5:13,2:4)
12 𝐷2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝐵2𝐷𝑧2
𝑟𝐵2𝐷𝑧2

(3𝑟𝐵2 − 𝑟3𝐵3)𝐷𝑧2
0

2𝑟𝐵2𝐷𝑥2
2𝑟𝐵2𝐷𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

𝜑2 : 𝑇 (1,2:4)
21 𝐷1 = 𝑟𝐵1𝐷𝑧1, 𝜑

′
2 : 𝑇 (2:4,2:4)

21 𝐷1 =

⎛⎜⎜⎜⎜⎜⎜⎝ 𝐵1𝐷𝑥1
𝐵1𝐷𝑦1

(𝐵1 − 𝑟2𝐵2)𝐷𝑧1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝜑′′2 : 𝑇 (5:13,2:4)
21 𝐷1 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝐵2𝐷𝑧1
𝑟𝐵2𝐷𝑧1

(3𝑟𝐵2 − 𝑟3𝐵3)𝐷𝑧1
0

2𝑟𝐵2𝐷𝑥1
2𝑟𝐵2𝐷𝑦1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

−𝐸𝑧1 : (𝐵1 − 𝑟2𝐵2)𝐷𝑧2, −𝐸′𝑧1 :

⎛⎜⎜⎜⎜⎜⎜⎝ 𝑟𝐵2𝐷𝑥2
𝑟𝐵2𝐷𝑦2

(3𝑟𝐵2 − 𝑟3𝐵3)𝐷𝑧2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

−𝐸′′𝑧1 : −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝐵2 − 𝑟2𝐵3)𝐷𝑧2
(𝐵2 − 𝑟2𝐵3)𝐷𝑧2

(3𝐵2 − 6𝑟2𝐵3 + 𝑟4𝐵4)𝐷𝑧2
0

2(𝐵2 − 𝑟2𝐵3)𝐷𝑥2
2(𝐵2 − 𝑟2𝐵3)𝐷𝑦2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

40 Chapter 5. Electrostatics

Tinker9 User Manual

Quadrupole Terms

𝜑1 : 𝑇 (1,5:13)
12 𝑄2 = 𝑟2𝐵2𝑄𝑧𝑧2, 𝜑

′
1 : 𝑇 (2:4,5:13)

12 𝑄2 = −

⎛⎜⎜⎜⎜⎜⎜⎝ 2𝑟𝐵2𝑄𝑥𝑧2
2𝑟𝐵2𝑄𝑦𝑧2

(2𝑟𝐵2 − 𝑟3𝐵3)𝑄𝑧𝑧2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝜑′′1 : 𝑇 (5:13,5:13)
12 𝑄2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝐵2𝑄𝑥𝑥2 − 𝑟2𝐵3𝑄𝑧𝑧2
2𝐵2𝑄𝑦𝑦2 − 𝑟2𝐵3𝑄𝑧𝑧2

(2𝐵2 − 5𝑟2𝐵3 + 𝑟4𝐵4)𝑄𝑧𝑧2
4𝐵2𝑄𝑥𝑦2

4(𝐵2 − 𝑟2𝐵3)𝑄𝑥𝑧2
4(𝐵2 − 𝑟2𝐵3)𝑄𝑦𝑧2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

𝜑2 : 𝑇 (1,5:13)
21 𝑄1 = 𝑟2𝐵2𝑄𝑧𝑧1, 𝜑

′
2 : 𝑇 (2:4,5:13)

21 𝑄1 =

⎛⎜⎜⎜⎜⎜⎜⎝ 2𝑟𝐵2𝑄𝑥𝑧1
2𝑟𝐵2𝑄𝑦𝑧1

(2𝑟𝐵2 − 𝑟3𝐵3)𝑄𝑧𝑧1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝜑′′2 : 𝑇 (5:13,5:13)
21 𝑄1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝐵2𝑄𝑥𝑥1 − 𝑟2𝐵3𝑄𝑧𝑧1
2𝐵2𝑄𝑦𝑦1 − 𝑟2𝐵3𝑄𝑧𝑧1

(2𝐵2 − 5𝑟2𝐵3 + 𝑟4𝐵4)𝑄𝑧𝑧1
4𝐵2𝑄𝑥𝑦1

4(𝐵2 − 𝑟2𝐵3)𝑄𝑥𝑧1
4(𝐵2 − 𝑟2𝐵3)𝑄𝑦𝑧1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

−𝐸𝑧1 : −(2𝑟𝐵2 − 𝑟3𝐵3)𝑄𝑧𝑧2, −𝐸′𝑧1 :

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2(𝐵2 − 𝑟2𝐵3)𝑄𝑥𝑧2
2(𝐵2 − 𝑟2𝐵3)𝑄𝑦𝑧2

(2𝐵2 − 5𝑟2𝐵3 + 𝑟4𝐵4)𝑄𝑧𝑧2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

−𝐸′′𝑧1 :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2𝑟𝐵3𝑄𝑦𝑦2 − 𝑟3𝐵4𝑄𝑧𝑧2
−2𝑟𝐵3𝑄𝑥𝑥2 − 𝑟3𝐵4𝑄𝑧𝑧2

(12𝑟𝐵3 − 9𝑟3𝐵4 + 𝑟5𝐵5)𝑄𝑧𝑧2
4𝑟𝐵3𝑄𝑥𝑦2

4(3𝑟𝐵3 − 𝑟3𝐵4)𝑄𝑥𝑧2
4(3𝑟𝐵3 − 𝑟3𝐵4)𝑄𝑦𝑧2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5.3. Quasi-Internal Frame 41

Tinker9 User Manual

42 Chapter 5. Electrostatics

CHAPTER

SIX

KEYWORDS

This section contains detailed descriptions of the keyword parameters
used to define or alter the course of a Tinker calculation. The keyword
control file is optional in the sense that all of the Tinker programs will
run in the absence of a keyfile and will simply use default values or query
the user for needed information. However, the keywords allow use of a
wide variety of algorithmic and procedural options, many of which are
unavailable interactively.

Keywords are read from the keyword control file. All programs look first
for a keyfile with the same base name as the input molecular system and
ending in the extension key. If this file does not exist, then Tinker tries
to use a generic keyfile with the name tinker.key and located in the same
directory as the input system. If neither a system-specific nor a generic
keyfile is present, Tinker will continue by using default values for key-
word options and asking interactive questions as necessary.

Tinker searches the keyfile during the course of a calculation for relevant
keywords that may be present. All keywords must appear as the first word
on the line. Any blank space to the left of the keyword is ignored, and all
contents of the keyfiles are case insensitive. Some keywords take modifiers;
i.e., Tinker looks further on the same line for additional information, such
as the value of some parameter related to the keyword. Modifier informa-
tion is read in free format, but must be completely contained on the same
line as the original keyword. Any lines contained in the keyfile which do
not qualify as valid keyword lines are treated as comments and are simply
ignored.

43

Tinker9 User Manual

Several keywords take a list of integer values (atom numbers, for exam-
ple) as modifiers. For these keywords the integers can simply be listed
explicitly and separated by spaces, commas or tabs. If a range of numbers
is desired, it can be specified by listing the negative of the first number
of the range, followed by a separator and the last number of the range.
For example, the keyword line LIGAND 4 -9 17 23 could be used to add
atoms 4, 9 through 17, and 23 to the set of ligand atoms during a Tinker
calculation.

Listed below are the available Tinker keywords sorted into groups by gen-
eral function, along with brief descriptions of their actions, possible key-
word modifiers, and usage examples.

6.1 Valence Potentials

6.1.1 Bond Stretching

BONDTYPE [HARMONIC / MORSE]

Chooses the functional form of the bond stretching potential. The HAR-
MONIC option selects a Taylor series expansion containing terms from
harmonic through quartic. The MORSE option selects a Morse potential
fit to the ideal bond length and stretching force constant parameter values.
The default is to use the HARMONIC potential.

BONDTERM [NONE / ONLY]

Controls use of the bond stretching potential energy term. In the absence
of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option
turns off all potential energy terms except for this one.

BONDUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
bond stretching potential into units of kcal/mol. The correct value is force
field dependent and typically provided in the header of the master force
field parameter file. The default value of 1.0 is used, if the BONDUNIT
keyword is not given in the force field parameter file or the keyfile.

44 Chapter 6. Keywords

Tinker9 User Manual

BOND [2 integers & 2 reals]

Provides the values for a single bond stretching parameter. The integer
modifiers give the atom class numbers for the two kinds of atoms in-
volved in the bond which is to be defined. The real number modifiers
give the force constant value in kcal/mol/Å2 for the bond and the ideal
bond length in Angstroms. An example is as follows:

• BOND A B Force Ideal

BOND-CUBIC [real]

Sets the value (in 1/Å) of the cubic term in the Taylor series expansion
form of the bond stretching potential energy. The real number modifier
gives the value of the coefficient as a multiple of the quadratic coefficient.
This term multiplied by the bond stretching energy unit conversion factor,
the force constant, and the cube of the deviation of the bond length from
its ideal value gives the cubic contribution to the bond stretching energy.
The default value in the absence of the BOND-CUBIC keyword is zero; i.e.,
the cubic bond stretching term is omitted.

BOND-QUARTIC [real]

Sets the value (in 1/Å2) of the quartic term in the Taylor series expansion
form of the bond stretching potential energy. The real number modifier
gives the value of the coefficient as a multiple of the quadratic coefficient.
This term multiplied by the bond stretching energy unit conversion factor,
the force constant, and the forth power of the deviation of the bond length
from its ideal value gives the quartic contribution to the bond stretching
energy. The default value in the absence of the BOND-QUARTIC keyword
is zero; i.e., the quartic bond stretching term is omitted.

See also:

Bond Stretching

6.1. Valence Potentials 45

Tinker9 User Manual

6.1.2 Angle Bending

ANGLETERM [NONE / ONLY]

Controls use of the bond angle bending potential energy term. In the ab-
sence of a modifying option, this keyword turns on use of the potential.
The NONE option turns off use of this potential energy term. The ONLY
option turns off all potential energy terms except for this one.

ANGLEUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
bond angle bending potential into units of kcal/mol. The correct value is
force field dependent and typically provided in the header of the master
force field parameter file. The default value of (𝜋/180)2 is used, if the
ANGLEUNIT keyword is not given in the force field parameter file or the
keyfile.

ANGLE [3 integers & 4 reals]

Provides the values for a single bond angle bending parameter. The in-
teger modifiers give the atom class numbers for the three kinds of atoms
involved in the angle which is to be defined. The real number modifiers
give the force constant value for the angle and up to three ideal bond an-
gles in degrees. In most cases only one ideal bond angle is given, and that
value is used for all occurrences of the specified bond angle. If all three
ideal angles are given, the values apply when the central atom of the angle
is attached to 0, 1 or 2 additional hydrogen atoms, respectively. This “hy-
drogen environment” option is provided to implement the corresponding
feature of Allinger’s MM force fields. The default units for the force con-
stant are kcal/mol/rad2, but this can be controlled via the ANGLEUNIT
keyword. An example is as follows:

• ANGLE A1 C A2 Force Ideal

ANGLEF [3 integers & 3 reals]

Provides the values for a single bond angle bending parameter for a
SHAPES-style Fourier potential function. The integer modifiers give the
atom class numbers for the three kinds of atoms involved in the angle
which is to be defined. The real number modifiers give the force constant
value for the angle, the angle shift in degrees, and the periodicity value.

46 Chapter 6. Keywords

Tinker9 User Manual

Note that the force constant should be given as the “harmonic” value and
not the native Fourier value. The default units for the force constant are
kcal/mol/rad2, but this can be controlled via the ANGLEUNIT keyword.
An example is as follows:

• ANGLEF A1 C A2 Force Ideal Periodicity

ANGLEP [3 integers & 2 reals]

Provides the values for a single projected in-plane bond angle bending pa-
rameter. The integer modifiers give the atom class numbers for the three
kinds of atoms involved in the angle which is to be defined. The real num-
ber modifiers give the force constant value for the angle and up to two
ideal bond angles in degrees. In most cases only one ideal bond angle is
given, and that value is used for all occurrences of the specified bond an-
gle. If all two ideal angles are given, the values apply when the central
atom of the angle is attached to 0 or 1 additional hydrogen atoms, respec-
tively. This “hydrogen environment” option is provided to implement the
corresponding feature of Allinger’s MM force fields. The default units for
the force constant are kcal/mol/rad2, but this can be controlled via the
ANGLEUNIT keyword. An example is as follows:

• ANGLEP A1 C A2 Force Ideal

ANGLE-CUBIC [real]

Sets the value (in 1/deg) of the cubic term in the Taylor series expansion
form of the bond angle bending potential energy. The real number modi-
fier gives the value of the coefficient as a multiple of the quadratic coeffi-
cient. This term multiplied by the angle bending energy unit conversion
factor, the force constant, and the cube of the deviation of the bond angle
from its ideal value gives the cubic contribution to the angle bending en-
ergy. The default value in the absence of the ANGLE-CUBIC keyword is
zero; i.e., the cubic angle bending term is omitted.

ANGLE-QUARTIC [real]

Sets the value (in 1/deg2) of the quartic term in the Taylor series expan-
sion form of the bond angle bending potential energy. The real number
modifier gives the value of the coefficient as a multiple of the quadratic
coefficient. This term multiplied by the angle bending energy unit conver-
sion factor, the force constant, and the forth power of the deviation of the
bond angle from its ideal value gives the quartic contribution to the angle

6.1. Valence Potentials 47

Tinker9 User Manual

bending energy. The default value in the absence of the ANGLE-QUARTIC
keyword is zero; i.e., the quartic angle bending term is omitted.

ANGLE-PENTIC [real]

Sets the value (in 1/deg3) of the fifth power term in the Taylor series ex-
pansion form of the bond angle bending potential energy. The real num-
ber modifier gives the value of the coefficient as a multiple of the quadratic
coefficient. This term multiplied by the angle bending energy unit conver-
sion factor, the force constant, and the fifth power of the deviation of the
bond angle from its ideal value gives the pentic contribution to the angle
bending energy. The default value in the absence of the ANGLE-PENTIC
keyword is zero; i.e., the pentic angle bending term is omitted.

ANGLE-SEXTIC [real]

Sets the value (in 1/deg4) of the sixth power term in the Taylor series ex-
pansion form of the bond angle bending potential energy. The real num-
ber modifier gives the value of the coefficient as a multiple of the quadratic
coefficient. This term multiplied by the angle bending energy unit conver-
sion factor, the force constant, and the sixth power of the deviation of the
bond angle from its ideal value gives the sextic contribution to the angle
bending energy. The default value in the absence of the ANGLE-SEXTIC
keyword is zero; i.e., the sextic angle bending term is omitted.

See also:

Angle Bending

6.1.3 Stretch-Bend Coupling

STRBNDTERM [NONE / ONLY]

Controls use of the bond stretching-angle bending cross term potential
energy. In the absence of a modifying option, this keyword turns on use
of the potential. The NONE option turns off use of this potential energy
term. The ONLY option turns off all potential energy terms except for this
one.

STRBNDUNIT [real]

48 Chapter 6. Keywords

Tinker9 User Manual

Sets the scale factor needed to convert the energy value computed by the
bond stretching-angle bending cross term potential into units of kcal/mol.
The correct value is force field dependent and typically provided in the
header of the master force field parameter file. The default value of 𝜋/180
is used, if the STRBNDUNIT keyword is not given in the force field pa-
rameter file or the keyfile.

STRBND [3 integers & 2 reals]

Provides the values for a single stretch-bend cross term potential parame-
ter. The integer modifiers give the atom class numbers for the three kinds
of atoms involved in the angle which is to be defined. The real number
modifiers give the force constant values for the first bond (first two atom
classes) with the angle, and the second bond with the angle, respectively.
The default units for the stretch-bend force constant are kcal/mol/Å/rad,
but this can be controlled via the STRBNDUNIT keyword. An example is
as follows:

• STRBND A1 C A2 Force1 Force2

See also:

Stretch-Bend Coupling

6.1.4 Urey-Bradley Potential

UREYTERM [NONE / ONLY]

Controls use of the Urey-Bradley potential energy term. In the absence of
a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns
off all potential energy terms except for this one.

UREYUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
Urey-Bradley potential into units of kcal/mol. The correct value is force
field dependent and typically provided in the header of the master force
field parameter file. The default value of 1.0 is used, if the UREYUNIT
keyword is not given in the force field parameter file or the keyfile.

UREYBRAD [3 integers & 2 reals]

6.1. Valence Potentials 49

Tinker9 User Manual

Provides the values for a single Urey-Bradley cross term potential param-
eter. The integer modifiers give the atom class numbers for the three kinds
of atoms involved in the angle for which a Urey-Bradley term is to be de-
fined. The real number modifiers give the force constant value for the term
and the target value for the 1-3 distance in Angstroms. The default units
for the force constant are kcal/mol/Å2, but this can be controlled via the
UREYUNIT keyword. An example is as follows:

• UREYBRAD A1 C A3 Force Ideal

UREY-CUBIC [real]

Sets the value (in 1/Å) of the cubic term in the Taylor series expansion
form of the Urey-Bradley potential energy. The real number modifier gives
the value of the coefficient as a multiple of the quadratic coefficient. The
default value in the absence of the UREY-CUBIC keyword is zero; i.e., the
cubic Urey-Bradley term is omitted.

UREY-QUARTIC [real]

Sets the value (in 1/Å2) of the quartic term in the Taylor series expansion
form of the Urey-Bradley potential energy. The real number modifier gives
the value of the coefficient as a multiple of the quadratic coefficient. The
default value in the absence of the UREY-QUARTIC keyword is zero; i.e.,
the quartic Urey-Bradley term is omitted.

See also:

Urey-Bradley Potential

6.1.5 Out-of-Plane Bending

OPBENDTYPE [W-D-C / ALLINGER]

Sets the type of angle to be used in the out-of-plane bending potential
energy term. The choices are to use the Wilson-Decius-Cross (W-D-C)
formulation from vibrational spectroscopy, or the Allinger angle from the
MM2/MM3 force fields. The default value in the absence of the OPBEND-
TYPE keyword is to use the W-D-C angle.

OPBENDTERM [NONE / ONLY]

50 Chapter 6. Keywords

Tinker9 User Manual

Controls use of the out-of-plane bending potential energy term. In the
absence of a modifying option, this keyword turns on use of the potential.
The NONE option turns off use of this potential energy term. The ONLY
option turns off all potential energy terms except for this one.

OPBENDUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
out-of-plane bending potential into units of kcal/mol. The correct value is
force field dependent and typically provided in the header of the master
force field parameter file. The default of (𝜋/180)2 is used, if the OPBEN-
DUNIT keyword is not given in the force field parameter file or the keyfile.

OPBEND [4 integers & 1 real]

Provides the values for a single out-of-plane bending potential parame-
ter. The first integer modifier is the atom class of the out-of-plane atom
and the second integer is the atom class of the central trigonal atom. The
third and fourth integers give the atom classes of the two remaining atoms
attached to the trigonal atom. Values of zero for the third and fourth in-
tegers are treated as wildcards, and can represent any atom type. The real
number modifier gives the force constant value for the out-of-plane angle.
The default units for the force constant are kcal/mol/rad2, but this can be
controlled via the OPBENDUNIT keyword. An example is as follows:

• OPBEND A B 0 0 force

OPBEND-CUBIC [real]

Sets the value (in 1/deg) of the cubic term in the Taylor series expansion
form of the out-of-plane bending potential energy. The real number mod-
ifier gives the value of the coefficient as a multiple of the quadratic coeffi-
cient. This term multiplied by the out-of-plane bending energy unit con-
version factor, the force constant, and the cube of the deviation of the out-
of-plane angle from zero gives the cubic contribution to the out-of-plane
bending energy. The default value in the absence of the OPBEND-CUBIC
keyword is zero; i.e., the cubic out-of-plane bending term is omitted.

OPBEND-QUARTIC [real]

Sets the value (in 1/deg2) of the quartic term in the Taylor series expan-
sion form of the out-of-plane bending potential energy. The real number
modifier gives the value of the coefficient as a multiple of the quadratic

6.1. Valence Potentials 51

Tinker9 User Manual

coefficient. This term multiplied by the out-of-plane bending energy unit
conversion factor, the force constant, and the forth power of the devia-
tion of the out-of-plane angle from zero gives the quartic contribution to
the out-of-plane bending energy. The default value in the absence of the
OPBEND-QUARTIC keyword is zero; i.e., the quartic out-of-plane bend-
ing term is omitted.

OPBEND-PENTIC [real]

Sets the value (in 1/deg3) of the fifth power term in the Taylor series ex-
pansion form of the out-of-plane bending potential energy. The real num-
ber modifier gives the value of the coefficient as a multiple of the quadratic
coefficient. This term multiplied by the out-of-plane bending energy unit
conversion factor, the force constant, and the fifth power of the devia-
tion of the out-of-plane angle from zero gives the pentic contribution to
the out-of-plane bending energy. The default value in the absence of the
OPBEND-PENTIC keyword is zero; i.e., the pentic out-of-plane bending
term is omitted.

OPBEND-SEXTIC [real]

Sets the value (in 1/deg4) of the sixth power term in the Taylor series ex-
pansion form of the out-of-plane bending potential energy. The real num-
ber modifier gives the value of the coefficient as a multiple of the quadratic
coefficient. This term multiplied by the out-of-plane bending energy unit
conversion factor, the force constant, and the sixth power of the devia-
tion of the out-of-plane angle from zero gives the sextic contribution to
the out-of-plane bending energy. The default value in the absence of the
OPBEND-SEXTIC keyword is zero; i.e., the sextic out-of-plane bending
term is omitted.

See also:

Out-of-Plane Bending

52 Chapter 6. Keywords

Tinker9 User Manual

6.1.6 Improper Dihedral

IMPROPTERM [NONE / ONLY]

Controls use of the CHARMM-style improper dihedral angle potential en-
ergy term. In the absence of a modifying option, this keyword turns on use
of the potential. The NONE option turns off use of this potential energy
term. The ONLY option turns off all potential energy terms except for this
one.

IMPROPUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
CHARMM-style improper dihedral angle potential into units of kcal/mol.
The correct value is force field dependent and typically provided in the
header of the master force field parameter file. The default value of
(𝜋/180)2 is used, if the IMPROPUNIT keyword is not given in the force
field parameter file or the keyfile.

IMPROPER [4 integers & 2 reals]

Provides the values for a single CHARMM-style improper dihedral angle
parameter. The integer modifiers give the atom class numbers for the four
kinds of atoms involved in the torsion which is to be defined. The real
number modifiers give the force constant value for the deviation from the
target improper torsional angle, and the target value for the torsional an-
gle, respectively. The default units for the improper force constant are
kcal/mol/rad2, but this can be controlled via the IMPROPUNIT keyword.

The real number modifiers give the force constant in kcal/mol/rad2 and
ideal dihedral angle in degrees. An example is as follows:

• IMPROPER D A B C Force Ideal

See also:

Improper Dihedral

6.1. Valence Potentials 53

Tinker9 User Manual

6.1.7 Improper Torsion

IMPTORTERM [NONE / ONLY]

Controls use of the AMBER-style improper torsional angle potential en-
ergy term. In the absence of a modifying option, this keyword turns on
use of the potential. The NONE option turns off use of this potential en-
ergy term. The ONLY option turns off all potential energy terms except
for this one.

IMPTORUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
AMBER-style improper torsional angle potential into units of kcal/mol.
The correct value is force field dependent and typically provided in the
header of the master force field parameter file. The default value of 1.0 is
used, if the IMPTORSUNIT keyword is not given in the force field param-
eter file or the keyfile.

IMPTORS [4 integers & up to 3 real/real/integer triples]

Provides the values for a single AMBER-style improper torsional angle pa-
rameter. The first four integer modifiers give the atom class numbers for
the atoms involved in the improper torsional angle to be defined. By con-
vention, the third atom class of the four is the trigonal atom on which the
improper torsion is centered. The torsional angle computed is literally
that defined by the four atom classes in the order specified by the key-
word. Each of the remaining triples of real/real/integer modifiers give
the half-amplitude in kcal/mol, phase offset in degrees and periodicity of
a particular improper torsional term, respectively. Periodicities through
3-fold are allowed for improper torsional parameters. An example is as
follows:

• IMPTORS A B C D Amplitude PhaseOffset Periodicity

See also:

Improper Torsion

54 Chapter 6. Keywords

Tinker9 User Manual

6.1.8 Torsional Angle

TORSIONTERM [NONE / ONLY]

Controls use of the torsional angle potential energy term. In the absence of
a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns
off all potential energy terms except for this one.

TORSIONUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
torsional angle potential into units of kcal/mol. The correct value is force
field dependent and typically provided in the header of the master force
field parameter file. The default value of 1.0 is used, if the TORSIONUNIT
keyword is not given in the force field parameter file or the keyfile.

TORSION [4 integers & up to 6 real/real/integer triples]

Provides the values for a single torsional angle parameter. The first four
integer modifiers give the atom class numbers for the atoms involved
in the torsional angle to be defined. Each of the remaining triples of
real/real/integer modifiers give the amplitude in kcal/mol, phase offset
in degrees and periodicity of a particular torsional function term, respec-
tively. Periodicities through 6-fold are allowed for torsional parameters.
An example is as follows:

• TORSION A B C D Amplitude PhaseOffset Periodicity

See also:

Torsional Angle

6.1.9 Pi-Orbital Torsional Angle

PITORSTERM [NONE / ONLY]

Controls use of the pi-orbital torsional angle potential energy term. In the
absence of a modifying option, this keyword turns on use of the potential.
The NONE option turns off use of this potential energy term. The ONLY
option turns off all potential energy terms except for this one.

PITORSUNIT [real]

6.1. Valence Potentials 55

Tinker9 User Manual

Sets the scale factor needed to convert the energy value computed by the
pi-orbital torsional angle potential into units of kcal/mol. The correct
value is force field dependent and typically provided in the header of the
master force field parameter file. The default value of 1.0 is used, if the
PITORSUNIT keyword is not given in the force field parameter file or the
keyfile.

PITORS [2 integers & 1 real]

Provides the values for a single pi-orbital torsional angle potential pa-
rameter. The two integer modifiers give the atom class numbers for the
atoms involved in the central bond of the torsional angle to be parame-
terized. The real modifier gives the value of the 2-fold Fourier amplitude
in kcal/mol for the torsional angle between p-orbitals centered on the de-
fined bond atom classes. The default units for the stretch-torsion force
constant can be controlled via the PITORSUNIT keyword. An example is
as follows:

• PITORS A B Amplitude

See also:

Pi-Orbital Torsional Angle

6.1.10 Stretch-Torsion Coupling

Stretch-Torsion Coupling

STRTORTERM [NONE / ONLY]

Controls use of the bond stretching-torsional angle cross term potential
energy. In the absence of a modifying option, this keyword turns on use
of the potential. The NONE option turns off use of this potential energy
term. The ONLY option turns off all potential energy terms except for this
one.

STRTORUNIT [real]

Sets the scale factor needed to convert the energy value computed by
the bond stretching-torsional angle cross term potential into units of
kcal/mol. The correct value is force field dependent and typically pro-
vided in the header of the master force field parameter file. The default

56 Chapter 6. Keywords

Tinker9 User Manual

value of 1.0 is used, if the STRTORUNIT keyword is not given in the force
field parameter file or the keyfile.

STRTORS

Provides the values for a single stretch-torsion cross term potential param-
eter. The two integer modifiers give the atom class numbers for the atoms
involved in the central bond of the torsional angles to be parameterized.
The real modifier gives the value of the stretch-torsion force constant for
all torsional angles with the defined atom classes for the central bond.
The default units for the stretch-torsion force constant can be controlled
via the STRTORUNIT keyword.

6.1.11 Angle-Torsion Coupling

ANGTORTERM [NONE / ONLY]

Controls use of the angle bending-torsional angle cross term. In the ab-
sence of a modifying option, this keyword turns on use of the potential.
The NONE option turns off use of this potential energy term. The ONLY
option turns off all potential energy terms except for this one.

ANGTORUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
angle bending-torsional angle cross term into units of kcal/mol. The cor-
rect value is force field dependent and typically provided in the header of
the master force field parameter file. The default value of 𝜋/180 is used, if
the ANGTORUNIT keyword is not given in the force field parameter file
or the keyfile.

ANGTORS [4 integers & 6 reals]

Provides the values for a single bond angle bending-torsional angle pa-
rameter. The integer modifiers give the atom class numbers for the four
kinds of atoms involved in the torsion and its contained angles. The real
number modifiers give the force constant values for both angles coupled
with 1-, 2- and 3-fold torsional terms. The default units for the force con-
stants are kcal/mol/rad, but this can be controlled via the ANGTORUNIT
keyword.

6.1. Valence Potentials 57

Tinker9 User Manual

See also:

Angle-Torsion Coupling

6.1.12 Torsion-Torsion Coupling

TORTORTERM [NONE / ONLY]

Controls use of the torsion-torsion potential energy term. In the absence of
a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns
off all potential energy terms except for this one.

TORTORUNIT [real]

Sets the scale factor needed to convert the energy value computed by the
torsion-torsion potential into units of kcal/mol. The correct value is force
field dependent and typically provided in the header of the master force
field parameter file. The default value of 1.0 is used, if the TORTORUNIT
keyword is not given in the force field parameter file or the keyfile.

TORTORS [7 integers, then multiple lines of 2 integers and 1 real]

Provides the values for a single torsion-torsion parameter. The first five
integer modifiers give the atom class numbers for the atoms involved in
the two adjacent torsional angles to be defined. The last two integer mod-
ifiers contain the number of data grid points that lie along each axis of the
torsion-torsion map. For example, this value will be 13 for a 30 degree
torsional angle spacing, i.e., 360/30 = 12, but 13 values are required since
data values for -180 and +180 degrees must both be supplied. The subse-
quent lines contain the torsion-torsion map data as the integer values in
degrees of each torsional angle and the target energy value in kcal/mol.

See also:

Torsion-Torsion Coupling

58 Chapter 6. Keywords

Tinker9 User Manual

6.2 Constraints & Restraints

RESTRAINTERM [NONE / ONLY]

Controls use of the restraint potential energy terms. In the absence of
a modifying option, this keyword turns on use of these potentials. The
NONE option turns off use of these potential energy terms. The ONLY
option turns off all potential energy terms except for these terms.

RESTRAIN-ANGLE [3 integers & 3 reals]

Implements a flat-welled harmonic potential that can be used to restrain
the angle between three atoms to lie within a specified angle range. The
integer modifiers contain the atom numbers of the three atoms whose
angle is to be restrained. The first real modifier is the force constant in
kcal/mol/deg2 for the restraint. The last two real modifiers give the lower
and upper bounds in degrees on the allowed angle values. If the angle
lies between the lower and upper bounds, the restraint potential is zero.
Outside the bounds, the harmonic restraint is applied. If the angle range
modifiers are omitted, then the atoms are restrained to the angle found in
the input structure. If the force constant is also omitted, a default value of
10.0 is used.

RESTRAIN-DISTANCE [2 integers & 3 reals]

Implements a flat-welled harmonic potential that can be used to restrain
two atoms to lie within a specified distance range. The integer modifiers
contain the atom numbers of the two atoms to be restrained. The first real
modifier specifies the force constant in kcal/mol/Å2 for the restraint. The
next two real modifiers give the lower and upper bounds in Angstroms
on the allowed distance range. If the interatomic distance lies between
these lower and upper bounds, the restraint potential is zero. Outside the
bounds, the harmonic restraint is applied. If the distance range modi-
fiers are omitted, then the atoms are restrained to the interatomic distance
found in the input structure. If the force constant is also omitted, a default
value of 100.0 is used.

RESTRAIN-GROUPS [2 integers & 3 reals]

Implements a flat-welled harmonic distance restraint between the centers-
of-mass of two groups of atoms. The integer modifiers are the numbers of

6.2. Constraints & Restraints 59

Tinker9 User Manual

the two groups which must be defined separately via the GROUP key-
word. The first real modifier is the force constant in kcal/mol/Å2 for the
restraint. The last two real modifiers give the lower and upper bounds in
Angstroms on the allowed intergroup center-of-mass distance values. If
the distance range modifiers are omitted, then the groups are restrained
to the distance found in the input structure. If the force constant is also
omitted, a default value of 100.0 is used.

RESTRAIN-PLANE [X/Y/Z 1 integer & 3 reals]

Provides the ability to restrain an individual atom to a specified plane or-
thogonal to a coordinate axis. The first modifier gives the axis (X, Y or
Z) perpendicular to the restraint plane. The integer modifier contains the
atom number of the atom to be restrained. The first real number modifier
gives the coordinate value to which the atom is restrained along the speci-
fied axis. The second real modifier sets the force constant in kcal/mol/Å2

for the harmonic restraint potential. The final real modifier defines a
range above and below the specified plane within which the restraint value
is zero. If the force constant is omitted, a default value of 100.0 is used. If
the exclusion range is omitted, it is taken to be zero.

RESTRAIN-POSITION [1 integer & 5 reals, OR 2 integers & 2 reals]

Provides the ability to restrain an atom or group of atoms to specified co-
ordinate positions. An initial positive integer modifier contains the atom
number of the atom to be restrained. The first three real number modi-
fiers give the X-, Y- and Z-coordinates to which the atom is tethered. The
fourth real modifier sets the force constant in kcal/mol/Å2 for the har-
monic restraint potential. The final real modifier defines a sphere around
the specified coordinates within which the restraint value is zero. If the
coordinates are omitted, then the atom is restrained to the origin. If the
force constant is omitted, a default value of 100.0 is used. If the exclusion
sphere radius is omitted, it is taken to be zero.

Alternatively, if the initial integer modifier is negative, then a second in-
teger is read, followed by two real number modifiers. All atoms in the
range from the absolute value of the first integer through the second in-
teger are restrained to their current coordinates. The first real modifier is
the harmonic force constant in kcal/mol/Å2, and the second real defines
a sphere around each atom within which the restraint value is zero. If the
force constant is omitted, a default value of 100.0 is used. If the exclusion

60 Chapter 6. Keywords

Tinker9 User Manual

sphere radius is omitted, it is taken to be zero.

RESTRAIN-TORSION [4 integers & 3 reals]

Implements a flat-welled harmonic potential that can be used to restrain
the torsional angle between four atoms to lie within a specified angle
range. The initial integer modifiers contains the atom numbers of the four
atoms whose torsional angle, computed in the atom order listed, is to be
restrained. The first real modifier gives a force constant in kcal/mol/deg2

for the restraint. The last two real modifiers give the lower and upper
bounds in degrees on the allowed torsional angle values. The angle values
given can wrap around across -180 and +180 degrees. Outside the allowed
angle range, the harmonic restraint is applied. If the angle range modifiers
are omitted, then the atoms are restrained to the torsional angle found in
the input structure. If the force constant is also omitted, a default value of
1.0 is used.

6.3 HIPPO Force Field

CHGTRN [integer & 2 reals]

DISPERSION [integer & 2 reals]

6.4 Molecular Dynamics and Ensembles

INTEGRATOR [VERLET / RESPA / NOSE-HOOVER / LPISTON]

See also:

Verlet Integrator, RESPA Integrator, Extended Nosé-Hoover Chain, Langevin
Piston

THERMOSTAT [NOSE-HOOVER / LPISTON]

See also:

Extended Nosé-Hoover Chain, Langevin Piston

BAROSTAT [MONTECARLO / BERENDSEN / NOSE-HOOVER /
LPISTON]

6.3. HIPPO Force Field 61

Tinker9 User Manual

See also:

Monte Carlo Barostat, Berendsen Barostat, Extended Nosé-Hoover Chain,
Langevin Piston

6.5 Free Energy

OSRW-ELE []

OSRW-LAMBDA [real] Sets the internal logical flag for OSRW to true and
provides the initial value of lambda.

OSRW-TORS []

OSRW-VDW []

ROTATABLE-BOND [integer list]

6.6 Parallelization

CUDA-DEVICE [integer]

Followed by an integer value starting from 0, sets the CUDA-enabled GPU
device for the program. Value will be overwritten by environment vari-
able CUDA_DEVICE. For instance, a node has four CUDA devices, and
the CUDA_VISIBLE_DEVICES environment variable (part of CUDA li-
brary) has been set to CUDA_VISIBLE_DEVICES=1,3. This means only
two CUDA devices are avaiable here, thus the valid values for CUDA-
DEVICE are 0 and 1.

GPU-PACKAGE [CUDA / OPENACC] Tinker8

Selects code paths for some GPU algorithms where both CUDA and Ope-
nACC versions have been implemented. The default value is CUDA. Value
will be overwritten by environment variable GPU_PACKAGE.

62 Chapter 6. Keywords

Tinker9 User Manual

6.7 Mathematical Algorithms

RANDOMSEED [integer]

Followed by an integer value, sets the initial seed value for the random
number generator used by Tinker. Setting RANDOMSEED to the same
value as an earlier run will allow exact reproduction of the earlier cal-
culation. (Note that this will not hold across different machine types.)
RANDOMSEED should be set to a positive integer less than about 2 bil-
lion. In the absence of the RANDOMSEED keyword the seed is chosen
randomly based upon the number of seconds that have elapsed in the cur-
rent decade.

6.7. Mathematical Algorithms 63

Tinker9 User Manual

64 Chapter 6. Keywords

REFERENCES

[1] Viloya S. Allured, Christine M. Kelly, and Clark R. Landis.
SHAPES empirical force field: new treatment of angular poten-
tials and its application to square-planar transition-metal com-
plexes. Journal of the American Chemical Society, 113(1):1–12, 1991.
doi:10.1021/ja00001a001.

[2] Norman L. Allinger, Young H. Yuh, and Jenn-Huei Lii. Molec-
ular mechanics. The MM3 force field for hydrocarbons. 1. Jour-
nal of the American Chemical Society, 111(23):8551–8566, 1989.
doi:10.1021/ja00205a001.

[3] E. Bright Wilson, Jr., J. C. Decius, and Paul C. Cross. Molecular Vi-
brations: The Theory of Infrared and Raman Vibrational Spectra. Dover
Publications, Inc., New York, 1980. ISBN 9780486639413.

[4] Glenn J. Martyna, Mark E. Tuckerman, Douglas J. Tobias,
and Michael L. Klein. Explicit reversible integrators for ex-
tended systems dynamics. Molecular Physics, 87(5):1117–1157, 1996.
doi:10.1080/00268979600100761.

[5] Scott E. Feller, Yuhong Zhang, Richard W. Pastor, and Bernard R.
Brooks. Constant pressure molecular dynamics simulation:
The Langevin piston method. The Journal of Chemical Physics,
103(11):4613–4621, 1995. doi:10.1063/1.470648.

[6] Celeste Sagui, Lee G. Pedersen, and Thomas A. Darden. Towards
an accurate representation of electrostatics in classical force fields:

65

https://doi.org/10.1021/ja00001a001
https://doi.org/10.1021/ja00205a001
https://doi.org/10.1080/00268979600100761
https://doi.org/10.1063/1.470648

Tinker9 User Manual

Efficient implementation of multipolar interactions in biomolecu-
lar simulations. The Journal of Chemical Physics, 120(1):73–87, 2004.
doi:10.1063/1.1630791.

[7] Wei Wang and Robert D. Skeel. Fast evaluation of polarizable
forces. The Journal of Chemical Physics, 123(16):164107, 2005.
doi:10.1063/1.2056544.

[8] B. T. Thole. Molecular polarizabilities calculated with a mod-
ified dipole interaction. Chemical Physics, 59(3):341–350, 1981.
doi:10.1016/0301-0104(81)85176-2.

66 References

https://doi.org/10.1063/1.1630791
https://doi.org/10.1063/1.2056544
https://doi.org/10.1016/0301-0104(81)85176-2

INDEX

A
ANGLE, 46
ANGLE-CUBIC, 47
ANGLE-PENTIC, 48
ANGLE-QUARTIC, 47
ANGLE-SEXTIC, 48
ANGLEF, 46
ANGLEP, 47
ANGLETERM, 46
ANGLEUNIT, 46
ANGTORS, 57
ANGTORTERM, 57
ANGTORUNIT, 57

B
BAROSTAT, 61
BOND, 45
BOND-CUBIC, 45
BOND-QUARTIC, 45
BONDTERM, 44
BONDTYPE, 44
BONDUNIT, 44

C
CUDA_DEVICE, 62
CUDA-DEVICE, 62

G
GPU_PACKAGE, 62
GPU-PACKAGE, 62

I
IMPROPER, 53
IMPROPTERM, 53
IMPROPUNIT, 53
IMPTORS, 54
IMPTORTERM, 54
IMPTORUNIT, 54
INTEGRATOR, 61

O
OPBEND, 51
OPBEND-CUBIC, 51
OPBEND-PENTIC, 52
OPBEND-QUARTIC, 51
OPBEND-SEXTIC, 52
OPBENDTERM, 50
OPBENDTYPE, 50
OPBENDUNIT, 51

P
PITORS, 56
PITORSTERM, 55
PITORSUNIT, 55

67

Tinker9 User Manual

R
RANDOMSEED, 63
RESTRAIN-ANGLE, 59
RESTRAIN-DISTANCE, 59
RESTRAIN-GROUPS, 59
RESTRAIN-PLANE, 60
RESTRAIN-POSITION, 60
RESTRAIN-TORSION, 61
RESTRAINTERM, 59

S
STRBND, 49
STRBNDTERM, 48
STRBNDUNIT, 48
STRTORS, 57
STRTORTERM, 56
STRTORUNIT, 56

T
THERMOSTAT, 61
TORSION, 55
TORSIONTERM, 55
TORSIONUNIT, 55
TORTORS, 58
TORTORTERM, 58
TORTORUNIT, 58

U
UREY-CUBIC, 50
UREY-QUARTIC, 50
UREYBRAD, 49
UREYTERM, 49
UREYUNIT, 49

68 Index

	Introduction
	Installation
	Prerequisites
	Download the Canonical Tinker
	Build Tinker9 with CMake
	Quick Start
	Configure CMake
	Configure Compilers
	Configure Tinker9
	Make Tinker9

	Tutorials
	Common File Types
	Command Line GUI
	Program: analyze
	Program: minimize
	Program: dynamic

	Features & Methods
	Valence Potential Functions
	Bond Stretching
	Angle Bending
	Stretch-Bend Coupling
	Urey-Bradley Potential
	Out-of-Plane Bending
	Improper Dihedral
	Improper Torsion
	Torsional Angle
	Pi-Orbital Torsional Angle
	Stretch-Torsion Coupling
	Angle-Torsion Coupling
	Torsion-Torsion Coupling

	Van der Waals Potential Functions
	Integrators and Ensembles
	Monte Carlo Barostat
	Berendsen Barostat
	Verlet Integrator
	RESPA Integrator
	Extended Nosé-Hoover Chain
	Langevin Piston

	Electrostatics
	Permanent Multipole
	Definitions and Units
	Energy Torque Gradient

	Induced Dipole
	Energy
	Gradient
	Conjugate Gradient
	Polarization Model: AMOEBA (Thole Damping 2)

	Quasi-Internal Frame
	Rotation Matrix
	Multipole Interaction in QI Frame
	Details
	Charge Terms
	Dipole Terms
	Quadrupole Terms

	Keywords
	Valence Potentials
	Bond Stretching
	Angle Bending
	Stretch-Bend Coupling
	Urey-Bradley Potential
	Out-of-Plane Bending
	Improper Dihedral
	Improper Torsion
	Torsional Angle
	Pi-Orbital Torsional Angle
	Stretch-Torsion Coupling
	Angle-Torsion Coupling
	Torsion-Torsion Coupling

	Constraints & Restraints
	HIPPO Force Field
	Molecular Dynamics and Ensembles
	Free Energy
	Parallelization
	Mathematical Algorithms

	References
	Index

